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Abstract

Growing evidence from experiments and field studies supporting

the existence of time-inconsistent discounting behavior in decision

making encourages economists to investigate its impact on standard

economic theories. We extend DellaVigna and Malmendier (2004)’s

monopolistic pricing under quasi-hyperbolic discounting to the asym-

metric information case where the consumer may hold private infor-

mation on different dimensions: heterogeneous consumption benefit,

heterogeneous short-run impatience, and heterogeneous naivety. Some

important properties established in its complete information pricing

scenario do not hold any more. Interestingly, the degree of short-

run impatience exhibits a non-monotonic impact on the seller’s profit

when the consumption benefit is the consumer’s private information.

As long as the principal is imprecise about the time preference of her

agents, an over-consumption of the investment good for the sophisti-

cated consumer will be involved. At last, in the case of diverse naivety,

when the principal can screen her agents, more naive agent gets more

rent in the sense of fictitious utility, but in fact the consumer’s real

surplus decreases in the degree of naivety.

Key words: Time-inconsistency ; Quasi-hyperbolic discounting ;

Investment Good ; Screening Menu

JEL classification: D03; D82; D91
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1 Introduction

Growing evidences from experiments and field studies (for example: experi-

mental evidences from Larwood and Whittaker (1977), Kirby and Herrnstein

(1995); field studies by Madrian and Shea (2001), Ariely and Wertenbroch

(2002), DellaVigna and Malmendier (2006), etc.) support the existence of a

lack of self-control on the part of individual decision makers, which may lead

to time-inconsistent behavior. This leads to the following question: how a

rational profit-maximizing firm can take advantage from this irrational as-

pect of consumers’ preference and tailor its contracts or pricing schemes in

response to it? This is particularly relevant in investment good industries.

When the benefit (utility) from consuming comes later than the purchasing

(consuming) date: a typical example emphasized by DellaVigna and Mal-

mendier (2004) (DM, henceforth), is the attendance to a health club which

involves current exercising effort cost and only delivers future health benefits.

DM study the optimal pricing scheme by a time-consistent firm facing a

time-inconsistent consumer, with a quasi-hyperbolic discount function. Their

conclusions are strikingly different from the standard finding in industrial

organization, according to which an optimal two-part tariff should feature

marginal cost pricing plus a fixed fee which extracts the entire consumer sur-

plus. Instead, they show that a monopolist in the investment good industry

facing a time-inconsistent consumer will charge a price below marginal cost,

along with a higher flat fee, which is consistent with the empirical evidence

about health club pricing: a small per entrance fee coupled with a large reg-

istration fee. Thanks to this non-standard skewed pricing, the firm’s profit

is not hurt by the consumer’s short-run impatience as long as the latter is

fully aware of his time-inconsistency problem, i.e., he is sophisticated.

To derive these results, DM assume that there is no asymmetric informa-
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tion between the firm and the consumer; nevertheless, in the reality, we also

sometimes encounter the private information on the consumer side appear-

ing in the market. In this paper, we suppose instead that the consumer may

hold private information on different dimensions. Three kinds of asymmetric

information are considered: (1) first, the intrinsic benefit from consuming

the investment good may be the consumer’s private information; (2) second,

the consumer may hold private information about his degree of short-run

impatience; (3) third, different consumers may differ in their self-awareness

about their future short-run impatience, i.e., his degree of naivety may be

the consumer’s private information, where we adopt the definition of naivety

as in O’Donoghue and Rabin (2001).

The main results of our paper are as follows. When the consumer holds

private information about his intrinsic benefit of consuming the investment

good, we find that under the second-best pricing, the first-best below-marginal-

cost per-usage pricing property established in DM does not hold for the

whole population; specifically, the per-usage price for some relatively inef-

ficient types (low benefit consumer) may be higher than the marginal cost.

More importantly, unlike in the first-best, the existence of time-inconsistency

of the consumer hurts the firm’s profit even if the consumer is sophisticated.

When time-inconsistency is combined with asymmetric information, the firm

cannot get a full reimbursement of its per-usage loss by charging an entrance

fee because of the existence of the informational rent. And interestingly,

this rent and the firm’s expected profit is non-monotonic in the degree of

short-run impatience: when the consumer is close to a fully patient one,

more short-run impatience hurts the firm; while when the consumer’s short-

run patience level is extremely low, more short-run impatience improves the

firm’s profit, where the intuition is that the firm can take advantage of the
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significant conflict between the consumer’s long-run and short-run self in the

sense of charging an extremely huge entrance fee, since the relatively patient

and sophisticated long-run self is urgent to pay and participate the club in

order to commit his future impulsive self to consume under a low per-usage

price.

When the consumer’s short-run impatience becomes his private informa-

tion, the below-marginal-cost per-usage pricing property is still preserved

and the shape of the second-best pricing scheme depends on the distribution

of the consumer’s cost of consuming the investment good. For example, if

the consuming cost is uniformly distributed, then the only feasible pricing

scheme is a pooling one; otherwise, separating pricing schemes may exist.

No matter which kind of second-best pricing scheme that emerges at the

optimum, when the consumer has private information about his short-run

time preference parameter, the first-best property that the firm’s profit is

invariant as long as the consumer is sophisticated does not hold.

At last, we model the private information on the consumer’s naivety.

In the quasi-hyperbolic (β, δ)-discounting framework, following O’Donoghue

and Rabin (2001), we parameterize the consumer’s naivety by his subjective

prediction of the future short-run impatience, which is denoted by β̂ ∈ [β, 1].

The firm knows the short-run impatience parameter of the consumer, but

does not know to which extent the consumer himself knows it: the firm

cannot observe the cognitive belief of the consumer, β̂, while the consumer

sticks to his belief β̂, and doesn’t know the true β or the fact that the firm

knows β when contracting. In one word, the two contracting parties hold

different beliefs about the consumer’s future short-run impatience, and since

the consumer is naive, he does not update his belief after observing the pricing

scheme offered by the firm. When the firm can only offer a pooling price in
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the second-best, the firm’s first-best benefit from the consumer’s naivety

disappears, i.e., the firm can only obtain a sophisticated consumer’s profit

when trading with a naive consumer. When the firm can screen the degree

of naivety, we find that the sophisticated type over-consumes the investment

good, while the consumption allocation for a fully naive consumer coincides

with its complete information level. Though the more naive consumer gets

more fictitious rent when contracting, in fact, the firm extracts more from

him in the sense of real consumption surplus.

In the literature, traditionally there are mainly two approaches to model

individual’s self control/present bias problem (see Amador, Werning and

Angeletos, 2006). On top of quasi-hyperbolic discounting, another one is

Gul-Pesendorfer temptation preference formulation (Gul and Pesendorfer,

2001). Esteban and Miyagawa (2006), and Esteban, Miyagawa and Shum

(2007) are a set of papers on firm(s)’ pricing strategy against a population

of diversified consumers who hold Gul-Pesendorfer temptation preferences.

Thus this paper contributes to the literature on the incomplete information

contracting with a pool of quasi-hyperbolic agents, as both an extension to

the complete information first-best of DM and a parallel comparison with the

literature on the second-best pricing within Gul-Pesendorfer framework; and

we also look forward to shedding some light on the broader interdiscipline

among contract theory, industrial organization and behavioral economics.

Eliaz and Spiegler (2006) is also a paper concerning second-best contract-

ing between a time-consistent principal and a time-inconsistent agent, where

the private information is the agent’s degree of naivety. They use a gen-

eral formulation depicting time-inconsistency, which is compatible to both

the quasi-hyperbolic approach and Gul-Pesendorfer temptation preference.

They do not restrict or parameterize the functional form, while just consid-
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ered a pair of function (u, v), which represent the preferences of today and

tomorrow. The agent naively and privately holds a belief in probability θ

that his tomorrow’s preference would remain u with probability θ, and that

with probability 1 − θ, it will become v. The main distinguishing feature

with us is: we follow O’Donoghue and Rabin (2001) and DM, measuring the

agent’s naivety by a parameter β̂ ∈ [β, 1], hence the imaginary preference of

tomorrow is inside a continuum and not linear in β̂, unlike the linear combi-

nation between two extremes u and v in Eliaz and Spiegler (2006), where the

utility is linear in the naivety type θ. But some findings are similar to us,

e.g., their agent’s net utility of today decreases with his naivety type after

the participation to the contract.

The remainder of the paper is organized as follows. Section 2 briefly

reviews the concepts of quasi-hyperbolic discounting and naivety, and the

investment good pricing in DM. In Section 3 we introduce in turn the three

dimensions of the consumer’s private information to see the impact of asym-

metric information structure on contracting. Section 4 discusses some other

kinds of screening prices based on non-uniform distribution of exercising cost

for sophisticated and naive consumer, respectively. Section 5 concludes.

2 Quasi-hyperbolic Discounting, Naivety and

Investment Good

In this section we discuss the concepts of quasi-hyperbolic discounting and

naivety in the literature; and later Proposition 0 represents the first-best

investment good pricing properties worked out by DM.
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Investment Good If the benefit and utility of consuming a good comes

one period later than the date of consuming, then we call this kind of good an

investment good. For example, health club participation, continuation school

program, and rehabilitation center1 are some typical investment goods: exer-

cising/studying/curing today brings contemporaneous disutility but results

in fitness/knowledge/health tomorrow. The time lag between the consump-

tion and the benefit of the investment good influences the choice of a time-

inconsistent consumer who suffers from short-run impatience due to a lack

of self-control. DellaVigna and Malmendier (2004, 2006) propose a 3-date

framework (refer to Figure 1) to analyze health club pricing. At date 0, a firm

wants to attract a consumer to buy an investment good, where the consumer

incurs a cost c at date 1 if consuming and will receive a late benefit b at date

2, which can be interpreted as the consumer’s intrinsic willingness to pay for

the good at this date. The parameter c can be interpreted as the physical

and psychological disutility of exercising. The firm proposes a two-part tariff

(L, p) at date 0. L represents the entrance fee, while p is the per-usage price

for the participants of the health club. At date 0 the consumer has to decide

whether or not to accept this tariff scheme, that is, whether or not to join

the club. If he does not accept, he obtains a zero reservation utility. If he

accepts, he is committed to pay L to the firm at time t = 1.2 Moreover, at

1Normally a typical advertisement appearing at the gate of a rehabilitation center is:

“Building Brighter Futures For People With Miserable Addictions”.
2DM assume that L is incurred at date 1 in order to circumvent the short-run impatient

participation to the health club due to time-inconsistency. Their main highlight is the

decision discrepancy between the consumer’s self 0 and self 1 about whether or not to

exercise at date 1. So L and p are incurred in the same period and represent the point of

view of long-run and short-run self, respectively. This assumption is also critical to obtain

the first-best property under complete information that the firm’s profit is not affected by

the consumer’s time-inconsistency as long as he is sophisticated. We show below that this
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this date, the consumer who joined the club at date 0 decides whether to

consume or not: if he does not consume, he is exempted from paying the

price p or incurring the cost c, and he will get zero benefit at date 2; if he

consumes, he bears a total cost c + p at date 1 and will obtain a benefit b

at date 2. The cost c is unknown to both the firm and the consumer when

contracting at date 0, but the distribution of c is common knowledge between

the firm and the consumer. Denote by F the corresponding c.d.f., and by f

the corresponding p.d.f.

Figure 1 is about here

Time-inconsistent Preference The consumer has a self-control problem

that takes the form of short-run impatience. Following DM, we model this

self-control problem by using quasi-hyperbolic discounting. In this 3-date

framework, the present value of future utilities at date 0 of a quasi-hyperbolic

consumer is u0 = v0 + β
∑2

t=1 δ
tvt, where vt is the instantaneous utility flow.

The corresponding discount function is represented by the long dotted line in

Figure 2. The parameter δ < 1 is the usual exponential discounting factor;

while the parameter β < 1, which corresponds to the spread between long

dotted line and the solid line in Figure 2, measures the short-run impatience,

or myopia, of the quasi-hyperbolic consumer. The firm is assumed to be

fully patient and time-consistent,3 with a discount factor δ. The short dotted

line in Figure 2 measures the intertemporal evaluation of a quasi-hyperbolic

consumer with β < 1 starting from date 1. The difference between the long

and the short dotted lines reflects the consumer’s time-inconsistency: the

latter property is violated in the second-best.
3Here we regard the firm as an organization whose corporate intertemporal decision

making does not suffer from individual self-control problems.
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preferences toward the future (date 2) are different from the points of view

between today (date 0) and tomorrow (date 1).

Figure 2 is about here

Sophistication vs. Naivety Under (β, δ)-discounting, naivety, a notion

introduced by O’Donoghue and Rabin (2001), indicates the extent to which

a quasi-hyperbolic consumer is aware of his future self-control problem. For

example, a sophisticated consumer perfectly predicts that he will suffer from

a self-control problem tomorrow, and thus accurately predicts his tomor-

row’s time preference, as represented by the short dotted line in Figure 2.

By contrast, a fully naive consumer is totally unaware today of his short-run

impatience tomorrow, i.e., he believes falsely that he will be time-consistent

tomorrow: on Figure 2, a fully naive consumer falsely believes that the dis-

counting from date 1 to date 2 remains along the long dotted line. In an

intermediate case, labeled partial naivety, the consumer knows that he will

lack self-control tomorrow, but does not predict this problem to its full ex-

tent, i.e., the perceived discounting from date 1 to date 2 is located between

the long dotted line and the short dotted line in Figure 2.

In the 3-date setting, the prediction of the consumer’s self 0 about his

tomorrow’s utility is û1 = v1 + β̂δv2, where β̂ ∈ [β, 1]; while the consumer at

date 1 will evaluate present and future utilities according to u1 = v1 + βδv2.

The cases, β̂ = β, β < β̂ < 1 and β̂ = 1, represent “sophisticate”, “partial

naivety” and “full naivety”, respectively. An imperfectly self-aware consumer

(β̂ > β) exhibits not only time-inconsistent preferences, but also a decision

inconsistency since his self tomorrow will typically deviate from the naive

prediction made by his self today.
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The DM Pricing Coming back to the 3-date investment good consump-

tion framework, it should be noted that the gross benefit b comes at date 2,

but that the price p and the cost c are incurred at date 1. Hence, on behalf

of the consumer’s self 1, the decision whether to exercise at date 1 depends

on the sign of his net benefit βδb − p − c; the down payment −L does not

enter into consideration since it is a sunk cost. However, from the point of

view of the consumer’s self 0, his prediction about self 1’s decision whether

to exercise depends on the sign of β̂δb− p− c, which is less demanding than

the real consumption criteria since β̂ ≥ β, reflecting the consumer’s possible

naivety. At date 0, taking into account the predicted self 1’s behavior, the

consumer decides whether to join the club, i.e., to accept the two-part tariff

(L, p) or not, according to the following inequality:

βδ

(
−L+

∫ β̂δb−p

−∞
(δb− p− c) dF (c)

)
≥ 0.

The multiplicative term βδ can be directly cancelled so the consumer’s long-

run decision rule becomes:

−L+

∫ β̂δb−p

−∞
(δb− p− c) dF (c) ≥ 0. (1)

Equation (1) constitutes the participation constraint of the consumer. Con-

ditional on the consumer’s participating at date 0 and consuming at date

1, the firm will incur a cost4 a at date 1, which can be interpreted as the

per-usage cost of equipments. Under DM’s complete information structure,

there is no asymmetry of information between the firm and the consumer,

i.e., the firm knows the true value of β and the consumer’s self image β̂

4DM also introduces an initial setup cost K for the firm. Since this cost plays a

role neither in the consumer’s decision making, nor in the firm’s pricing, we disregard it,

ignoring the firm’s participation constraint.
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when contracting with the consumer. Thus the firm’s pricing behavior be-

comes a first-best contract design between a time-consistent principal and a

time-inconsistent agent:

max
L,p

δ [L+ F (βδb− p) (p− a)] , s.t., (1). (2)

Notice that the short-run impatience in the probability of exercising is β,

not β̂, which reflects that the final consumption decision will be made by the

consumer’s self 1. At the optimum, the participation constraint (1) binds,

as the firm extracts the entire consumer surplus. The optimal pricing rule is

then as follows:

pFB − a = −
(

1− β̂
)
δb
f
(
β̂δb− pFB

)
f (βδb− pFB)

−
F
(
β̂δb− pFB

)
− F

(
βδb− pFB

)
f (βδb− pFB)

(3)

The superscript “FB” stands for “first-best”; a detailed computation can be

found in the proof of Proposition 0 provided in the Appendix.

If the consumer is fully patient and time-consistent, i.e., β̂ = β = 1, then

Equation (3) boils down to p = a, which reflects the standard two-part tariff

pricing property, i.e., marginal cost per-usage pricing plus a lump-sum fee

which extracts all the consumer’s surplus. By contrast, if the consumer is

time-inconsistent, i.e., β ≤ β̂ ≤ 1 with at least one strict inequality, the right-

hand side of Equation (3) is always negative. Hence, the marginal cost per-

usage pricing property is violated when the firm faces a quasi-hyperbolic con-

sumer, no matter whether he is sophisticated or naive. We separate the differ-

ence between p and a into two parts by defining A ≡ −
(

1− β̂
)
δb

f(β̂δb−pFB)
f(βδb−pFB)

and B ≡ −F(β̂δb−pFB)−F(βδb−pFB)
f(βδb−pFB)

. Term A is a per-usage price discount,

whose goal is to secure a short-run impatient consumer’s participation at

date 0, based on his naive prediction of his future behavior. Term B, more

specifically, the difference between two probabilities in the numerator, reflects
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the firm’s ability to extract surplus from the consumer by taking advantage

of his naivety.5 Notice that both A and B are negative if β < β̂ < 1. Fur-

thermore, A = 0 if the consumer is fully naive; B = 0 if the consumer is

sophisticated. The following proposition collects the main insights of DM

about the investment good pricing for a time-inconsistent and naive con-

sumer under complete information.

Proposition 0 (The first-best pricing in DM)

(i) For a quasi-hyperbolic consumer, whether sophisticated or naive, the per-

usage price is lower than the marginal cost: when β < 1,

pFB < a = p∗,

where p∗ stands for the standard marginal cost per-usage pricing.

(ii) For a sophisticated quasi-hyperbolic consumer, the real consumption

probability and the firm’s profit are both unaffected by the consumer’s

short-run impatience β.

(iii) For a naive quasi-hyperbolic consumer, the firm’s profit is increasing

in β̂ when β is given.

We provide an illustrative proof of this result in the Appendix.6

5“the consumer will take advantage of the discount less often than he anticipates, and

the firm will make higher profits”, Page 364, DM.
6In the proof of Proposition 0 in the appendix, we only present the intuitive necessary

condition of the solution. For the sufficiency of the first-order condition and the existence

of pFB , we need a technical ABP (asymptotically bounded peaks) assumption on the density

f of c, which rules out the possibility of unbounded peaks on the tails of f (c). The fully

rigorous proof of the proposition and the details of ABP can be seen from DM, Page

362-363.
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The main insight of Proposition 0 is that the consumer’s time-inconsistency

has an impact on the pricing scheme, in contrast with traditional industrial

organization theory. Specifically, the optimal marginal cost pricing in a two-

part tariff is violated. The below-marginal-cost per-usage pricing brings a

loss to the firm at date 1, but by binding the participation constraint (1)

of the consumer, the firm gets a full reimbursement of the loss in per-usage

price by inflating the entrance fee L. This reflects a fact that the firm takes

into account the consumer’s myopia and adjusts the payoff structure across

periods accordingly. This skewed pricing scheme7 helps reduce the market

distortion and the profit loss due to the consumer’s self-control problem.

To discuss the impact of time-inconsistency to the firm’s profits, it is

useful to distinguish two cases.

I. Sophistication When the consumer is sophisticated, part (ii) of Propo-

sition 0 tells us that the pricing structure change due to time-inconsistency

leads to no loss for the firm. Indeed, it follows from the proof of Proposi-

tion 0 in the Appendix, that βδb − pFB
β̂=β

= δb − a, i.e., for a sophisticated

consumer, the consumption probability is independent from his short-run

impatience and coincides with a time-consistent consumer’s one. Thus there

is no distortion on the investment good consumption when both players are

sophisticated even if one party, the consumer, suffers from a self-control prob-

lem. Notice also that L is a committed pre-payment, through which the firm

can contract with the long-run patient self of the consumer about the par-

ticipation in the club beforehand. In addition, the consumer’s long-un self

also benefits from this skewed pricing scheme. The combination of a long-run

7We call
(
LFB , pFB

)
a skewed pricing scheme, in contrast with the standard balanced

two-part tariff pricing (L∗, p∗), where p∗ equals marginal cost and L∗ equals the consumer

surplus.
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committed L and a short-run discount, that is, pFB < a, avoids the impulsive

and inefficient decision of the short-run self 1, which helps the sophisticated

time-inconsistent consumer overcome his own self-control problem. At last,

it is worth emphasizing that the firm cannot take advantage from the sophis-

ticated consumer’s self-control problem, unlike when she deals with a naive

consumer.

II. Naivety By contrast, if the consumer is naive, the firm will exploit

the consumer’s naivety to some extent and extract more surplus by taking

advantage of the wedge between the consumer’s expectations and his actual

behavior. In that case, the ignorance of one party in the contract benefits

another party. And this exploitation behavior becomes more severe as the

extent of naivety, as measured by β̂ − β, increases.

DM only work out the first-best contract between a time-consistent firm

and a time-inconsistent consumer; although there is uncertainty at the date

of contracting, there is no private information on the consumer’s side. In

the next two sections, we extend this 3-date investment good pricing model

to the case of asymmetric information. We will see that some results in

Proposition 0 no longer hold under the asymmetric information structure.

3 Second-best Pricing for an Investment Good

under Uniform Exercising Cost

In this section, we derive the second-best pricing rule in the investment good

framework of DM when the consumer suffers from a self-control problem

and, moreover, may hold private information in different dimensions: (i) con-

sumers may differ with respect to the benefit b of consuming the investment
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good, while the seller does not know the value of b, which is the standard

dimension of adverse selection on the efficiency parameter of the consumer;

(ii) When the consumer is sophisticated, the firm may not be aware of the

exact extent of the consumer’s short-run impatience, i.e., β is the consumer’s

private information; (iii) for a naive consumer, the firm may not be aware of

the exact degree of the consumer’s naivety, i.e., β̂ is the consumer’s private

information, where this last scenario is like a non-common priors contracting:

the firm knows the true β and the consumer privately holds a naive belief β̂.

In the following, we treat these three cases in turn to assess the impact of

asymmetric information on the 3-date investment good model.8

For the sake of tractability, throughout this section we restrict ourselves to

the case of an uniform distribution of exercising cost c.9 In the next section,

we extend some of our results to the case of a non-uniformly distributed

exercising cost.

First, we have the following lemma which simplifies the first-best pricing

under uniform distribution of c.

Lemma 1 If c is drawn from an uniform distribution on a support [c, c] that

satisfies the boundary condition c < δb − a < c, then, for any β ≤ β̂ ≤ 1,

pFBS = pFBN = a − (1− β) δb, where the subscripts “S” and “N” stand for

sophisticated and naive consumer, respectively. Thus, ∂pFB

∂β̂
= 0. Besides,

LFB is increasing in β̂ for a given β.

Proof of Lemma 1. c is uniformly distributed, Equation (3) simplifies

8This paper prevents the complicated multi-dimensional screening problem, which may

constitute a direction of future work based on the latest development and progress in the

techniques of adverse selection theory.
9The uniform distribution is an extreme case satisfying the ABP assumption (see DM

and footnote 7), since there is no peak in the whole density on the support of c.
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to pFB − a = −
(

1− β̂
)
δb−

(
β̂δb− βδb

)
= − (1− β) δb, which is indepen-

dent of β̂. The boundary condition c < δb − a < c ensures that for any

β ≤ β̂ ≤ 1, the consumption probability belongs to the interval (0, 1), since

Pr
(
c ≤ βδb− pFB

)
= Pr (c ≤ δb− a) = δb−a−c

c−c . Using the fact that (1) is

binding, we obtain that

LFB =

∫ β̂δb−pFB

−∞

(
δb− pFB − c

)
dF (c). (4)

Finally ∂pFB

∂β̂
= 0 implies that ∂LFB

∂β̂
=
(

1− β̂
)

(δb)2 f(β̂δb− pFB) ≥ 0, where

the equality holds only if β̂ = 1.

This lemma tells us that under uniform exercising cost, there is no dis-

tortion in the consumption probability of the investment good even for a

naive time-inconsistent consumer because the per-usage price is insensitive

to the naivety and coincides with that of a sophisticated consumer. The

down payment L is the only instrument through which the firm can exploit

a time-inconsistent consumer when the latter is naive.

We now investigate whether the main features of investment good pricing

for a quasi-hyperbolic consumer emphasized in Proposition 0 under symmet-

ric information still hold or not under the three kinds of incomplete informa-

tion structures outlined above.

3.1 Private Information on b

Suppose first that the intrinsic efficiency parameter, i.e., the consumption

benefit b of the investment good, is the consumer’s private information. To

consider one effect at a time, we assume that the time preference parameters

of the consumer, β and β̂, are publicly observed by the firm. This allows to

concentrate on the adverse selection on b and to avoid a multi-dimensional
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private information problem. The distribution of b satisfies the following

assumption.

Assumption A1 b ∈
[
b, b
]

is drawn from a c.d.f. H with p.d.f. h and is

independent from c, but subject to the boundary condition

c < δb− a− δ

h(b)
< (2− β) δb− a < c. (5)

Moreover, the distribution of b satisfies the monotone hazard rate property,

i.e., 1−H(b)
h(b)

is decreasing in b.

The boundary conditions (5) ensure that the decisions of consumers will

be interior, i.e., for any type b of the consumer and any β ≤ β̂ ≤ 1, the re-

sulting predicted and real consumption probabilities at date 1 strictly belong

to (0, 1).10 The purpose of a large enough support for c is to provide enough

variability in c so that no one is excluded from the market, e.g., c is not so

large that the consumption probability of a type b consumer is 0, and no

pooling at the top arises, e.g., c is not so small that there exists b◦ ∈
[
b, b
)
,

such that for all b ∈
[
b◦, b

]
, type-b consumers are 100% sure to exercise at

date 1.

In a two-part tariff, the firm has two instruments for pricing: the entrance

fee L and the per-usage price p. Under asymmetric information, the firm

attempts at finding an incentive compatible and individually rational menu

of prices (L (b),p (b)), which maximizes its expected profit. Formally, the

firm’s program is:

max
L,p

∫ b

b

δ (L (b) + F (βδb− p (b)) (p (b)− a))h(b)db (6)

10See the proof of Proposition 1.
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subject to the following incentive compatibility (IC) and individual rational-

ity (IR) constraints:

ICs: ∀b ∈
[
b, b
]
, b ∈ arg max

b′∈[b,b]
u (b, b′) , (7)

IRs: ∀b ∈
[
b, b
]
, u (b, b) ≥ 0, (8)

where

u (b, b′) ≡ −L (b′) +

∫ β̂δb−p(b′)

−∞
(δb− p (b′)− c) dF (c)

is the left-hand side of (1) after a choice (L (b′),p (b′)) from the two-part tariff

menu. Define

v
(
b, β, β̂

)
≡
∫ β̂δb−p

−∞
(δb− p− c) dF (c). (9)

Spence-Mirrlees’ single crossing condition for the program (6) subject to (7)

and (8) requires that ∂v
∂b

be monotone in p, i.e., ∂2v
∂b∂p

is globally positive or

negative. In that case, the program can be transformed into a tractable

optimal control problem. Here

∂2v

∂b∂p
= −β̂(1− β̂)δ2bf ′(β̂δb− p)− δf(β̂δb− p) (10)

When c is uniformly distributed, ∂2v
∂b∂p

< 0 globally since then f ′ = 0.

Discussion on the Distribution of c Before turning to the main results

of second-best pricing with respect to b, it will be useful to discuss the trade-

off between the tractability of the model and the generality of the exercising

cost distribution. First, we observe that the Spence-Mirrlees condition is

satisfied as long as f ′(c) > 0 for all c. For robustness concern, we have checked

what happens in this case. It turns out that the analysis only involves more

complication like bunching, while not leading to any new qualitative insights

compared to the case of a uniform c. This is why we keep the assumption
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f ′ = 0 and its associated simpler and explicit solution to illustrate the main

second-best insights. Second, observe from (10) that if the distribution of

c is “close to uniform”, i.e., the density does not change too sharply, then

the Spence-Mirrlees condition works as well, from which we can anticipate

that the results in this subsection are not only restricted to a uniform c, but

also valid to a relatively broad family of exercising cost distributions. Third,

allowing a more general distribution for c which would violate the Spence-

Mirrlees’ single crossing condition may be an interesting starting point for

future work based on the latest development of literature on principal-agent

models under adverse selection (see for instance Araujo and Moreira (2010)).

Under Assumption A1, we find that when the consumer holds private

information, the second-best pricing no longer satisfies the below-marginal-

cost per-usage pricing property for some types. Moreover, the short-run

impatience of the consumer now involves some loss on the firm’s profit un-

der incomplete and asymmetric information, unlike in the first-best setting

of DM. The details are stated in the following two propositions and their

associated comments and corollaries.

Proposition 1 Under Assumption A1, the optimal price menu (LSB(b),pSB(b)),

where the superscript “SB” stands for “second-best”, is separating, with

pSB(b) = a− (1− β) δb+ δ
1−H(b)

h(b)
.

pSB(b) is decreasing in b and LSB(b) is increasing in b. Moreover, pSB(b) =

pFB(b), while pSB(b) > pFB(b) for b < b.

The proof of Proposition 1 is in the Appendix.

When we introduce private information on the traditional intrinsic effi-

ciency parameter b, the second-best per-usage price is upward distorted with
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respect to the first-best described in Lemma 1. First, pSB (b) coincides with

the first-best value pFB (b) only for the most efficient consumer with type b,

which is the usual “no distortion at the top” result. So the efficient consump-

tion probability of the investment good is only preserved for the short-run

impatient consumer who holds the highest willingness to pay. By contrast,

if b < b, pSB > pFB so βδb− pSB < δb− a, i.e., the real consumption proba-

bility is lower than the first-best thus there is a loss in efficiency even if the

consumer is sophisticated, in contrast with part (ii) of Proposition 0.

Secondly, and more importantly, pSB (b), unlike pFB for β < 1, is no longer

necessarily lower than the marginal cost a. Whether p is higher or lower than

a depends on the relative size of (1− β) b and 1−H(b)
h(b)

. When b is close to b,

the below-marginal-cost per-usage pricing is preserved, but it is attenuated

by the asymmetric information on b. As a result, when b becomes smaller,

pSB (b) may become larger than a. Indeed, under the following assumption

about the distribution and the support of b, the DM’s below-marginal-cost

per-usage pricing property no longer holds globally.

Assumption A1’ The benefit b from consuming is drawn as under A1, and

in addition (1− β) bh(b) < 1.

Observe that the additional boundary condition, (1− β) bh (b) < 1, is

satisfied by most kinds of distributions of b when β is close to 1.

Under Assumption A1’, we have the following corollary.

Corollary 1 Under Assumption A1 and A1’, and the same parametric/non-

parametric assumptions as in Proposition 1, there exists a threshold type

b̃ ∈
(
b, b
)

such that for b < b̃, pSB (b) > a.

Proof of Corollary 1. That (1− β) bh (b) < 1 implies that − (1− β) δb+

δ 1
h(b)

> 0, and thus that pSB (b) > a. Besides, we know that pSB
(
b
)

=
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pFB
(
b
)
< a and pSB (·) is continuous and strictly decreasing in b, so there is

a unique b̃ ∈
(
b, b
)

such that pSB
(
b̃
)

= a, and pSB (b) > a for all b < b̃.

This corollary tells us that the firm asks for a higher-than-marginal-cost

per-usage price for consumers with a low benefit of exercising. Figure 3

illustrates this result.

Figure 3 is about here

The failure of the below-marginal-cost per-usage pricing property comes

from the upward second-best distortion of p. Would this upward distortion

constitute a barrier to the first-best downward discount on p, thus hinder

the full refund for the firm’s profit when the consumer is sophisticated and

time-inconsistent? The answer from the following Proposition 2 is “yes”.

Proposition 2 Under the parametric/non-parametric assumptions of Propo-

sition 1, if the consumer is sophisticated (β̂ = β) and privately knows b, then

the firm’s second-best profit is non-monotone in β, specifically: πSB,bS , where

the subscript “S” stands for “sophisticated consumer”, is strictly convex in

the interval β ∈ (0, 1] and reaches its minimum at β = 1
2
. In addition, πSB,bS

of β is symmetric around 1
2
, i.e., πSB,bS (β) = πSB,bS (1− β).

The proof of Proposition 2 is in the Appendix.

From this proposition, first, we see that the property in part (ii) of Propo-

sition 0, that under symmetric information, the firm’s profit is unaffected by

the consumer’s short-run impatience as long as the latter is sophisticated,

does not hold any more under asymmetric information.

Under symmetric information, when facing a short-run impatient con-

sumer, the strategy of the firm is to discount downward the per-usage price

p, and instead enhance the flat fee L to take advantage of the consumer’s
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long-run patience, so that the loss in the per-usage price can be fully recov-

ered. But when the firm does not know the consumer’s benefit of exercising

at the contracting stage, optimal pricing calls for an upward distortion in the

per-usage price. Indeed, this involves a negative impact on the firm’s profit

of a sophisticated consumer’s time-inconsistency. From Proposition 2 and its

proof, πSB,bS is increasing in β in the region
[
1
2
, 1
]
, i.e., the loss in the profit

is more severe when β becomes farther from 1.

But when β is less than 1
2
, the firm’s profit becomes increasing in the

consumer’s short-run impatience level 1− β. Why does this happen? Notice

that 1−β does not only represent the short-run impatience of the consumer,

but also the difference in decision making between his long-run and short-

run selves, i.e., the extent of his time-inconsistency. Deciding to participate

to the club in advance is an exogenous commitment device that allows him

to overcome the future short-run impatience on behalf of his long-run self;

so when the consumer suffers from a severe self-control problem, i.e., when

β < 1
2
, his rational long-run self is urgently willing to participate to the club

and sacrifice more surplus when contracting, which allows the firm to ask

him a higher entrance fee L than it would, if it were facing a relatively more

patient consumer. This partially alleviates the loss in profit due to short-run

impatience.

Finally, the second-best profit locus is symmetric with respect to β = 1
2

in the interval β ∈ (0, 1). This means that when the consumer is extremely

impatient in the short-run (β is close to 0), the firm’s expected profit goes

back to the profit it would earn when facing a time-consistent consumer. An

intuitive explanation for this phenomenon is as follows: when β approaches

0, the sophisticated long-run self anticipates that at date 1, it is likely that

he will not exercise, so at date 0 he is willing to give much more rent L to
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the firm to help pre-commit his future self. When β = 0, in theory, the

consumer is indifferent between accepting any (L, p) at date 0 since all the

payments, cost, and benefit occur tomorrow and the day after are totally

irrelevant from self 0’s perspective; to maintain continuity, the second-best

pricing scheme at β = 0 leads to the full reimbursement for the firm’s loss

in profit; and the firm’s profit comes back to its level when the firm faces a

time-consistent consumer. Figure 4 depicts the evolution of the firm’s profit

when β varies from 0 to 1 for a sophisticated consumer.

Figure 4 is about here

In Figure 4, the convex curve is the firm’s expected profit when facing

a sophisticated consumer with known β but unknown b, while the higher

flat solid line represents the complete information profit in DM, which is

unaffected by the sophisticated consumer’s short-run impatience. The wedge

between this line and the curve reflects the loss in profit due to asymmetric

information on b.

For comparison purposes, it is useful to compute the expected consumer’s

informational rent as well as the utilitarian social welfare. We define the

informational rent U (b) by the left-hand side of (1), i.e., the participation

constraint. As for the measure of social welfare, we follow the paternalistic

definition of O’Donoghue and Rabin (2001), where SW = π + δE (U (b)).

Paternalism means in this context that the consumer’s discount factor in the

social welfare function is his long-run discount factor δ, not his short-run

discount factor βδ. In this sense, a paternalistic social planner corrects for

the consumer’s short-run impatience in evaluating social welfare, but takes

into account the consumer’s equilibrium consumption, which leads to a rent

U (b) in our context. The following result holds.
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Corollary 2 Suppose that the information structure is as in Proposition 2

and that the consumer is sophisticated. Then,

(i) The expected consumer informational rent E (U (b)) is non-monotone

and strictly concave in β, and reaches its maximum at β = 1
2
; in addition, it

is symmetric around β = 1
2
.

(ii) The social welfare is invariant in β.

The proof of Corollary 2 is in the Appendix.

The important information conveyed by this corollary is that though the

firm’s profit is affected by the consumer’s short-run impatience in a non-

monotonic way, paternalistic social welfare remains unaffected. The differ-

ence between symmetric and asymmetric information on b therefore lies only

in the allocation of surplus between the firm and the consumer. From the

expression for pSB (b) in Proposition 1, we obtain that the consumption prob-

ability at date 1 is:

F (βδb− pSB(b)) = δb− a− δ1−H(b)

h(b)
,

which is independent of β. Hence, the short-run impatience of a sophisticated

consumer has no impact on the social efficiency, while only the second-best in-

formation structure on b has an impact, i.e., the adjusted term δ 1−H(b)
h(b)

, which

is invariant in β. The evolution of β from 0 to 1 influences the bargaining

power between the firm and the consumer, whereby we have introduced the

intuition of non-monotonicity of informational rent with respect to β in the

analysis after Proposition 2.
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3.2 Sophisticated Consumer’s Private Information on

Short-run Patience Level β

In this subsection, we consider the following alternative information struc-

ture: the firm is perfectly aware of b and faces a sophisticated consumer, but

the latter’s short-run patience parameter β is his private information. The

firm’s prior about β is represented by a distribution over an interval
[
β, β

]
with c.d.f. G (·) and p.d.f. g (·), where 0 < β < β ≤ 1. The consumer’s

exercising cost c and his β are independently drawn.

We first examine whether the Spence-Mirrlees’ single crossing condition

holds in this context, which requires that ∂2v
∂β∂p

to be globally positive or

negative, where the function v follows from the definition in (9). We only

additionally impose β̂ = β since the consumer is assumed to be sophisticated

here. Thus
∂2v

∂β∂p
= − (1− β) (δb)2 f ′ (βδb− p) = 0 (11)

when c is uniformly distributed. As a result, the firm cannot screen the

consumer’s β using any kind of pricing menu, since the consumer evaluates

β and p separately: there exist no separating two-part tariffs (L (β) , p (β))

which can induce the consumer to reveal his type β. The following lemma

formalizes this idea.

Lemma 2 When the sophisticated consumer privately observes β ∈
[
β, β

]
and the exercising cost c is uniformly distributed, there exist no separating

price menu=(L (β′),p (β′))β′∈[β,β] which screen the consumer’s type β.

Proof of Lemma 2. Given a price scheme (L (β′),p (β′))β′∈[β,β], the IC

constraints of the consumer are

∀β ∈
[
β, β

]
, β = arg max

β′∈[β,β]
u (β, β′) ,
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where u (β, β′) = −L (β′) +
∫ βδb−p(β′)

c
(δb− p (β′)− c) dF (c). When c is uni-

formly distributed,

u (β, β′) = −L (β′) +
1

c− c
q (p (β′)) +

1

c− c
x (β)− c

c− c

(
δb− 1

2
c

)
,

where q (p) = 1
2
p2 − (δb− c) p and x (β) = 1

2
β (δb)2. Thus u (β, β′) is addi-

tively separable in (β, β′), which implies that all the types will choose the

same element in the menu (L (β′),p (β′))β′∈[β,β]. Therefore there exists no

separating pricing equilibrium.

Given this lemma, we search for an optimal second-best pooling pricing

scheme. The following proposition holds.

Proposition 3 When the consumer is sophisticated and β is his private in-

formation, the optimal second-best pooling price is

pSB,β = a− (1− E (β)) δb < a.

Moreover, the second-best profit of the firm when trading with a type β con-

sumer, πSB,βS (β), is decreasing in β.

Proof of Proposition 3. According to the prior of β, the firm’s pooling

program is

max
L,p

∫ β

β

δ (L+ F (βδb− p) (p− a)) dG(β), (12)

s.t. IRs: ∀β ∈
[
β, β

]
, u (β) = −L+

∫ βδb−p

c

(δb− p− c) dF (c) ≥ 0 (13)

From (13) we obtain that

u′(β) = (1− β) (δb)2 f(βδb− p) > 0. (14)
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Therefore, letting L =
∫ βδb−p
c

(δb− p− c) dF (c), all the individual ratio-

nality constraints are satisfied. Substitute into (12) yields:

max
p

∫ β

β

δ

(∫ βδb−p

c

(δb− p− c) dF (c) + F (βδb− p) (p− a)

)
dG(β)

= max
p

δ

(∫ βδb−p

c

(δb− p− c) dF (c) +

∫ β

β

F (βδb− p) (p− a) dG(β)

)
.

The first-order condition with respect to p is∫ β

β

(F (βδb− p)− f(βδb− p) (p− a)) dG(β) (15)

= F (βδb− p) +
(
1− β

)
δbf(βδb− p)

The second-order condition with respect to p is:

∂2πSB,βS

∂p2
= δ

(
f
(
βδb− p

)
+
(
1− β

)
δbf ′

(
βδb− p

))
+δ

(∫ β

β

(f ′ (βδb− p) (p− a)− 2f (βδb− p)) dG (β)

)
≤ 0.

where πSB,βS denotes the expected profit. When c is uniformly distributed,

∂2πSB,βS

∂p2
= − δ

c−c < 0 globally. So the first-order condition is sufficient for a

maximum. By imposing f (·) = 1
c−c into (15), we obtain

∫ β

β

(βδb− p− c− (p− a)) dG (β) = βδb− p− c+
(
1− β

)
δb.

By rearranging,

pSB,β = a− (1− E (β)) δb < a. (16)

Finally, by (12), πSB,βS (β) = δ
(
LSB,β + F

(
βδb− pSB,β

) (
pSB,β − a

))
, so that

∂πSB,βS (β)

∂β
= δ2bf

(
βδb− pSB,β

) (
pSB,β − a

)
< 0.
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The result follows.

From (16), we see that the below-marginal-cost per-usage pricing prop-

erty is preserved under this information structure. By contrast, part (ii) of

Proposition 0, i.e., the invariance of the firm’s profit with respect to β when

the consumer is sophisticated no longer holds when we introduce asymmetric

information on β: indeed, a more impatient consumer brings more profits to

the firm. The reason is that the pricing is pooling. In fact, from (16), pSB,β is

the average of pFBs, representing the firm’s second-best strategy when facing

a heterogeneous and imprecise market. It is more likely that a higher β type

consumer will exercise at date 1, which involves a higher per-usage loss to

the firm due to the below-marginal-cost per-usage pricing property.

3.3 Naive Consumer’s Private Information on β̂

In this subsection the firm knows the consumer’s short-run patience level

β and his benefit from exercising b, but does not know to what extent the

consumer himself is self-aware of his short-run impatience; that is, the con-

sumer’s perception of β, β̂, is his private information. Thus, while the firm

knows the actual short-run impatience of the consumer β, it does not ob-

serve the self image β̂ of the consumer. The firm only knows a prior of β̂

on [β, 1] with a c.d.f. J (·) and density j (·). We assume that β̂ and c are

independently distributed. The consumer privately holds a belief β̂ about

his short-term impatience, which may differ from the true β. Because he is

naive, he does not update his belief after observing the pricing scheme offered

by the firm i.e., the pricing scheme does not constitute a signal to the cogni-

tion of the consumer. The both parties contract based on their non-common

priors.

As in Section 3.2, Spence-Mirrlees’ single crossing condition is not satis-
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fied under uniform distribution of exercising cost c since

∂2v

∂β̂∂p
= −

(
1− β̂

)
(δb)2 f ′

(
β̂δb− p

)
= 0, (17)

because f ′ (·) = 0, where v is defined by (9). The following lemma parallels

Lemma 2.

Lemma 3 When the firm is not aware of the consumer’s degree of naivety

β̂ ∈ [β, 1], and the exercising cost c is uniformly distributed, there exist no

separating price schemes (L
(
β̂
)
, p
(
β̂
)

) which screen the consumer’s type

β̂.

The proof is exactly similar to that of Lemma 2, and therefore we omit

it here.

Given this lemma, we search for an optimal second-best pooling pricing

scheme. One has the following result.

Proposition 4 When the firm does not know to which extent the consumer

is naive, the optimal second-best pooling price is pSB,β̂ = a−(1− β) δb = pFB,

and the firm’s profit is the same as that it would obtain if it was to face a

sophisticated consumer.

Proof of Proposition 4. Based on the firm’s prior on β̂, its pooling

program is

max
L,p

∫ 1

β

δ (L+ F (βδb− p) (p− a)) dJ
(
β̂
)
, (18)

s.t. IRs: ∀β̂ ∈ [β, 1] , u
(
β̂
)

= −L+

∫ β̂δb−p

c

(δb− p− c) dF (c) ≥ 0. (19)

From (19) we obtain that

u′
(
β̂
)

=
(

1− β̂
)

(δb)2 f
(
β̂δb− p

)
≥ 0, (20)
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where the equality holds only if β̂ = 1. Letting L =
∫ βδb−p
c

(δb− p− c) dF (c),

all the individual rationality constraints are satisfied. Substituting into (18)

yields

max
p

∫ 1

β

δ

(∫ βδb−p

c

(δb− p− c) dF (c) + F (βδb− p) (p− a)

)
dJ
(
β̂
)

= max
p

δ

(∫ βδb−p

c

(δb− p− c) dF (c) + F (βδb− p) (p− a)

)
which is just the first-best program when the firm faces a sophisticated

consumer, as can be seen from (2) with (1) binding, and β̂ = β: p =

a− (1− β) δb = pFB.

The distinctive feature of the present setting, in which there is private

information on naivety, is that the different types only differ at date 0; till

date 1 all the types coincide since the consumption decision by the consumer

is made by the common and real β. So when we involve asymmetric infor-

mation in the dimension of naivety, the firm gives up the cheating intention

in contracting toward naivety since she is not aware of the consumer’s self-

awareness, i.e., “the source to be cheated is imprecise”. While the firm offers

a sophisticated consumer’s price to the whole naive population and keeps

the first-best profit by a sophisticated consumer. In the second-best, (iii) of

Proposition 0 may not hold.

4 Second-best Screening under Non-uniform

Exercising Cost

Section 3 documented several violations of the first-best pricing properties for

an investment good when different forms of asymmetric information were in-

troduced. These results were obtained under the assumption of a uniformly
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distributed exercising cost. In the case where the private benefit b from

consuming is the consumer’s private information, the qualitative results of

second-best pricing are robust for some reasonable perturbation of the distri-

bution of the exercising cost, i.e., when the density of exercising cost does not

change too much, so that the Spence-Mirrlees condition remains satisfied. An

undesirable feature of assuming a uniform cost distribution was that, when

the consumer’s short-run time preference and his self-awareness become his

private information, separating price schedules are ruled out. In this section,

we allow some dispersion in the density of c in order to investigate separating

pricing equilibria when β or β̂ are the consumer’s private information.

According to (11) and (17), we cannot allow any peaks in the density of

c on its support for otherwise single crossing may fail. A typical example

of a non-uniform distribution satisfying the no peak density restriction is an

exponential distribution with density function f (c) = λe−λc on [0,+∞), for

λ > 0. So f ′ (c) < 0 globally, i.e., single crossing is satisfied. We consider a

more general family of cost distribution:

Assumption A2 At date 0, both the firm and the consumer know that the

realization of cost c at date 1 follows a distribution on [c,+∞) such

that f ′ (c) < 0 globally and c < δb − a. Moreover, the distribution

of c satisfies the monotone hazard rate property, i.e., 1−F (c)
f(c)

is non-

increasing in c.

The boundary condition c < δb − a ensures that the predicted and the

real consumption probabilities are both strictly positive for all the types of

β and β̂ thus ruling out corner solutions.
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4.1 Private β of a Sophisticated Consumer

Suppose as in Section 3.2 that the firm faces a sophisticated consumer, whose

short-run impatience parameter it does not know. We denote as before by

G (·) and g (·) the c.d.f. and p.d.f. of the firm’s prior about β.

Under Assumption A2, the single crossing condition holds globally:

∂2v

∂β∂p
= − (1− β) (δb)2 f ′ (βδb− p) > 0.

Hence the prerequisite for a screening menu is satisfied.11 The firm’s program

for a price menu is:

max
L(β),p(β)

∫ β

β

δ (L (β) + F (βδb− p (β)) (p (β)− a)) dG (b) (21)

subject to:

ICs: ∀β ∈
[
β, β

]
,−L (β) + v (β, p (β)) = max

β′∈[β,β]
(−L (β′) + v (β, p (β′)))

(22)

IRs: ∀β ∈
[
β, β

]
,−L (β) + v (β, p (β)) ≥ 0 (23)

The following proposition depicts the second-best screening prices feature

under this information structure and the distribution assumptions.

Proposition 5 If the consumer is sophisticated and β is his private infor-

mation, and if the distribution of c satisfies A2, then an optimal separated

screening menu (LSB (β),pSB (β)) exists:

11For any kind of distribution of c, the firm can always implement a pooling equilib-

rium, which is depicted by Section 3.2. But when the distribution of c converges from

a decreasing density to a uniform, the feasible set of the firm’s pricing scheme (pooling

or separating) shrinks suddenly and discontinuously, i.e., when c is uniformly distributed,

then only a pooling scheme is feasible. This parallels the relationship between Section 4.2

and 3.3.
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(i) pSB (β) is continuous in β.

(ii) The per-usage price for type β coincides with its first-best level (no

distortion at the top): pSB
(
β
)

= pFBS
(
β
)

= a−
(
1− β

)
δb.

(iii) The per-usage price for type β is distorted downward with respect to

its first-best level: pSB
(
β
)
< pFBS

(
β
)
.

(iv) For the types between β and β, there may exist some bunching interval

(see Line AC in Figure 5), i.e, pooling per-usage price. But for the types

outside the bunching interval, pSB (β) is strictly increasing in β. For all

β ∈
(
β, β

)
, the per-usage price is distorted downward with respect to its

first-best level: pSB (β) < pFBS (β).

(v) LSB (β) is strictly decreasing in β for the screened types (outside the

bunching intervals), while is invariant in β in each bunching interval.

The proof of Proposition 5 is in the Appendix.

An illustrative shape of pSB (β) and its relationship with the first-best

are shown in Figure 5. Form Part (ii)(iii)(iv) of Proposition 5, the below-

marginal-cost per-usage pricing property is still preserved for the whole pop-

ulation when the firm faces a pool of diversely short-run impatient but so-

phisticated consumers.

Figure 5 is about here

Proposition 5 implies an interesting phenomenon: when a sophisticated

consumer holds private information about β and the firm can screen among

different types, the asymmetric information leads to over-consumption of the

investment good except for the most short-run patient type (β). From (3),

we can compute the first-best consumption probability of a sophisticatedly

time-inconsistent consumer, and obtain that it achieves the efficient time-
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consistent consumer’s level:

F
(
βδb− pFBS (β)

)
= F (βδb− a+ (1− β) δb) = F (δb− a) . (24)

While here the second-best consumption probability is F
(
βδb− pSB (β)

)
≥

F (δb− a) since pSB (β) ≤ pFBS (β), where the equality only holds for β = β.

This over-consumption can be also illustrated geometrically from Figure 5.

The critical fact is that the first-best per-usage price is increasing in β; on

the other hand, the set of incentive compatibility constraints on the interval[
β, β

]
requires that the second-best per-usage price is non-decreasing in β

(Region AC represents some “bunching” types): these lead to a downward

wedge from pFBS to pSB for all βs.

But the over-consumption in the second-best is not necessarily true glob-

ally for all types in the next subsection when β̂ is the consumer’s private

information since in general we do not have a monotonic first-best p across

β̂ on [β, 1] (see Figure 6 and the subsequent analysis).

4.2 Private β̂ of a Naive Consumer

Now, as in Section 3.3, the firm is aware of the imperfect self-awareness of

the consumer (naivety) but is imprecise about the extent of his naivety (β̂).

The firm’s prior about β̂ is just a distribution over the interval [β, 1] with

c.d.f. J (·) and density j (·).

Since we adopt the same preassumption as in Section 4.1 (Assumption

A2), and according to (17), single crossing condition is globally satisfied.

Therefore it may be possible to screen the consumer’s naivety type through

a menu of two-part tariffs (LSB
(
β̂
)
, pSB

(
β̂
)

). The firm’s program for an

optimal pricing menu in this information structure is:

max
L(β̂),p(β̂)

∫ 1

β

δ
(
L
(
β̂
)

+ F
(
βδb− p

(
β̂
))(

p
(
β̂
)
− a
))

dJ
(
β̂
)

(25)
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subject to:

ICs: ∀β̂ ∈ [β, 1] ,−L
(
β̂
)

+v
(
β̂, p

(
β̂
))

= max
β̂′∈[β,1]

(
−L

(
β̂′
)

+ v
(
β̂, p

(
β̂′
)))
(26)

IRs: ∀β̂ ∈ [β, 1] ,−L
(
β̂
)

+ v
(
β̂, p

(
β̂
))
≥ 0 (27)

The following proposition depicts the second-best screening prices feature

under Assumption A2.

Proposition 6 If the consumer is naive and β̂ is his private information,

and if the distribution of c satisfies Assumption A2 and b is large enough,

then an optimal separated screening menu exists:

(i) pSB
(
β̂
)

is continuous in β̂.

(ii) The per-usage price for β̂ = 1 coincides with its first-best (no distor-

tion at the “top” (fully naive)).

(iii) The per-usage price for β̂ = β is distorted downward with respect to

its first-best level.

(iv) For the types between β̂ = β and β̂ = 1, there may exist some bunch-

ing interval (see Figure 6), i.e, pooling per-usage price. But for the types

outside the bunching interval, pSB
(
β̂
)

is strictly increasing in β̂.

(v) LSB
(
β̂
)

is strictly decreasing in β̂ for the screened types (outside the

bunching intervals), while is invariant in β̂ in each bunching interval.

The proof of this proposition is in the Appendix.

An illustrative shape of pSB
(
β̂
)

and its comparison with the first-best

for the naive consumer are shown in Figure 6. Also from part (ii)(iii)(iv) of

Proposition 6,

∂pSB
(
β̂
)

∂β̂
≥ 0⇒ ∀β̂, pSB

(
β̂
)
≤ pSB

(
β̂ = 1

)
= pFBN

(
β̂ = 1

)
< a.
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Thus the below-marginal-cost per-usage pricing property is still preserved

when the firm faces a pool of diversely naive consumers.

Figure 6 is about here

Second, part (iii) of Proposition 6 tells us that the asymmetric information

on the consumer’s naivety extent involves definitely an over-consumption of

the investment good for the sophisticated type consumer since pSB < pFBS

when β̂ = β. According to (24), this involves an over-consumption at date

1 with respect to the socially efficient consumption probability since when

β̂ = β, F
(
βδb− pSB

)
> F

(
βδb− pFBS

)
= F (δb− a).

But from the illustration in Figure 6, the over-consumption with respect

to the first-best complete information scenario does not necessarily appear

for naive consumers. For example, pSB
(
β̂
)
≥ pFBN

(
β̂
)

for the bunching

types
[
β̂1, β̂2

]
, which means,

F
(
βδb− pSB

(
β̂
))
≤ F

(
βδb− pFBN

(
β̂
))

,∀β̂ ∈
[
β̂1, β̂2

]
,

where the equality holds only at the two boundaries β̂1 and β̂2. This is

different from the global over-consumption in the Subsection 4.1, whereby

the reason is that the per-usage price under complete information is not

necessarily non-decreasing in β̂ (see the locus of the curve pFBN

(
β̂
)

in Figure

6 and the analytical expression in (3)).

Third, for a fully naive consumer, his consumption probability is not influ-

enced by the firm’s asymmetric information (pSB
(
β̂ = 1

)
= pFBN

(
β̂ = 1

)
).

More importantly and interestingly, though the consumer’s informational

rent U
(
β̂
)

(= −LSB
(
β̂
)

+ v
(
β̂, pSB

(
β̂
))

) is increasing in β̂, this is just

the fictitious utility/rent based on naive expectation at date 0. The following

corollary states the wedge between the fictitious and the real rent/consumption
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surplus of a naive consumer, and describes both their evolutions across the

degree of naivety, β̂ − β.

Corollary 3 Under a given and public β, diverse and private β̂, and A2,

the consumer’s fictitious rent U
(
β̂
)

is increasing in β̂; while the real con-

sumption surplus is U
(
β̂
)
−
∫ β̂δb−pSB(β̂)
βδb−pSB(β̂)

(
δb− pSB

(
β̂
)
− c
)
dF (c), which is

decreasing in β̂.

The proof of Corollary 3 is in the Appendix.

For a consumer with naive expectation β̂, the wedge between his fictitious

and real surplus is
∫ β̂δb−pSB(β̂)
βδb−pSB(β̂)

(
δb− pSB

(
β̂
)
− c
)
dF (c), which reflects the

different cut-off points of exercising cost in the naive and sophisticated ex-

pectations. For a sophisticated type consumer, the fictitious and real sur-

plus coincide because the wedge cancels; and from the principle of screening

equilibrium, U
(
β̂ = β

)
= 0. So from Corollary 3, the increasing (Res. de-

creasing) fictitious (Res. real) rent in β̂ tell us an interesting finding: a naive

participant thought that he extracts positive rent from the firm, but in fact

he is exploited (negative real rent) after he learns the true β at date 1. Figure

7 also illustrates this.

Figure 7 is about here

5 Concluding Remarks

We introduce asymmetric information structure in DM’s monopolistic first-

best investment good pricing framework. Different dimensions of the con-

sumer’s private information, e.g., on the short-run patience level (β), on the

degree of naivety (β̂), and on the intrinsic willingness to pay (b), are consid-

ered, respectively.
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When the consumer privately holds the future benefit of consuming the

investment good (b), the known DM below-marginal-cost per-usage pricing

property in the complete information benchmark is not true for the whole

population in the second-best. The firm will distort the per-usage price

upward due to the incomplete information and thus may exert a higher-

than-marginal-cost per-usage price for the relatively inefficient types (low

willingness to pay).

More importantly, under the asymmetric information on b, the firm’s

profit is no longer unaffected by the consumer’s short-run impatience even

when the consumer is sophisticated, which is different from DM’s main find-

ing in the first-best. The upward distortion on the per-usage price obstructs

the first-best discount to attract a short-run impatient consumer, so a lower

β will involve a negative impact on the firm’s second-best profit even if the

consumer is sophisticated when β ∈
[
1
2
, 1
]
.

But when β < 1
2

and the consumer is sophisticated, i.e., perfectly self-

aware of his future short-run impatience to consume a healthy investment

good, he can regard the firm/club as an exogenous correction instrument

to overcome his own self-control problem thanks to the existence of a pre-

committed payment L before consumption and the lower per-usage price

during consumption, thus the consumer becomes more urgent to participate

the health club. Therefore the firm can ask for a higher entrance fee L to

reimburse the per-usage loss. As a result, the firm’s second-best expected

profit is decreasing in β when β ∈
(
0, 1

2

]
(lower β generates higher profit).

All these creates a non-monotonic, strictly convex and symmetric second-best

profit locus with respect to β when β varies from 0 to 1.

In addition, the social welfare (the sum of profit and consumer surplus) is

invariant in β as long as the consumer is sophisticated. The firm’s imprecise
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knowledge on b only influences the surplus allocation between the firm and

the consumer, while not the total volume in the economy.

When the consumer holds private information on the time preference (β)

and his belief toward tomorrow’s value (β̂), the second-best pricing feature

depends crucially on the distribution type of the exercising cost (c). When c is

uniformly distributed, the firm can only conduct a pooling pricing. When the

firm does not know the short-run patience level of a sophisticated consumer,

under the second-best pooling pricing, the firm prefers a short-run impatient

consumer since higher β realizes more consumption which involves more loss

to the firm in the per-usage stage. When the firm does not know the naivety

level of a naive consumer, the benefit to the profit due to the consumer’s

naivety in the first-best disappears under a second-best pooling pricing. The

firm can only offer a sophistication price scheme and reserve a sophisticated

consumer’s profit level for the whole population.

When the distribution of the exercising cost is non-uniform, the separated

screening pricing menus exist in the information structure of private β and

β̂, respectively. The second-best equilibrium involves an over-consumption

of the investment good with respect to its first-best (complete information

pricing) for all the sophisticated types. Facing the diverse naivety, the sophis-

ticated consumer’s participation constraint is binding at 0; while the more

naive consumer gets more fictitious rent when contracting, but in fact he is

more heavily exploited in the sense of negative real rent.

At last, in the future we incline to conduct some field or laboratory studies

to support or test the theoretical findings in this paper, and to compare with

the known DM first-best properties and their evidences in the investment

good industry as well.
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Appendix: Proofs

Proof of Proposition 0.

(i)

The firm’s problem is max
L,p

(2), s.t. (1). Substituting for L in (2) by

binding (1) yields

max
p
π (p) = δ

(∫ β̂δb−p

−∞
(δb− p− c) dF (c)− u−K + F (βδb− p) (p− a)

)
The first order condition with respect to p is:

−
(

1− β̂
)
δbf

(
β̂δb− p

)
−
∫ β̂δb−p

−∞
dF (c)−f (βδb− p) (p− a)+F (βδb− p) = 0

By rearranging this, we get Equation (3).

If β = β̂ = 1, pFB
β=β̂=1

= a.

If β < 1 and the consumer is sophisticated (β̂ = β):

pFB
β=β̂<1

− a = − (1− β) δb < 0 (28)

If β < 1 and the consumer is naive (β < β̂ ≤ 1):

pFB
β<β̂≤1 − a ≤ −

F
(
β̂δb− pFB

β<β̂≤1

)
− F

(
βδb− pFB

β<β̂≤1

)
f
(
βδb− pFB

β<β̂≤1

) < 0

So the “below-marginal-cost per-usage pricing” property for β < 1 is

shown.

(ii)

For sophisticated quasi-hyperbolic consumer, the real consumption prob-

ability is F
(
βδb− pFB

β=β̂<1

)
by (28)

= F (βδb− a+ (1− β) δb) = F (δb− a),

where the last term is exactly the resulting consumption probability of the

time-consistent consumer since pFB
β=β̂=1

= a.
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When β̂ = β, by imposing the fact that (1) is binding and Equation (28),

π
(
pFB
β=β̂<1

)
= δ

(∫ βδb−pFB
β=β̂<1

−∞

(
δb− pFB

β=β̂<1
− c
)
dF (c) + F

(
βδb− pFB

β=β̂<1

)(
pFB
β=β̂<1

− a
))

= δ

(
(δb− a+ (1− β) δb)

∫ δb−a

−∞
dF (c)−

∫ δb−a

−∞
cdF (c)− F (δb− a) (1− β) δb

)
= δ

(
F (δb− a) (δb− a)−

∫ δb−a

−∞
cdF (c)

)
which is independent of β.

(iii)

We use the envelope theorem:

∂π
(
pFB

)
∂β̂

=
(

1− β̂
)
δ3b2f

(
β̂δb− pFB

)
≥ 0

where the equality holds only if β̂ = 1.

So if given β, the firm’s profit strictly increases with the extent of naivety

in the entire region where β̂ varies from β to 1.

Proof of Proposition 1. Define the informational rent U (b) = u (b, b) =

−L (b) + v (b, p (b)) of type b, so from ICs in (7) and the envelope theorem,

U ′ (b) = ∂v
∂b

= β̂
(

1− β̂
)
δ2bf

(
β̂δb− p

)
+ δF

(
β̂δb− p

)
> 0. Thus ∀b ∈(

b, b
]
, u (b, b) > u (b, b); so the IRs in (8) can just reduce to the IR of the

bottom type b, i.e., u (b, b) ≥ 0. Since leaving rents to the agent is costly for

the firm, this bottom IR has to be binding.

And ICs in (7) tell us that ∀b, b′ ∈
[
b, b
]
,

−L (b′) + v (b′, p (b′)) ≥ −L (b) + v (b′, p (b)) (29)

−L (b) + v (b, p (b)) ≥ −L (b′) + v (b, p (b′)) (30)
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Summing (29) and (30), we obtain that:

v (b′, p (b′))− v (b′, p (b)) + v (b, p (b))− v (b, p (b′)) (31)

=

∫ b′

b

∫ p(b′)

p(b)

∂2v

∂b̂∂p

(
b̂, p
)
dpdb̂ ≥ 0

From (10) under the uniform c, we know that ∂2v

∂b̂∂p
< 0, so the inequality in

(31) restricts that b′ ≥ b⇔ p (b′) ≤ p (b), which gives a monotone constraint

on the optimal p (·): p′ (b) ≤ 0 for ∀b ∈
[
b, b
]
.

Substituting L (b) = −U (b) + v (b, p (b)), we can transform the original

program (6) subject to (7)(8) into the following optimal control problem

(p (b) as control variable, U (b) as state variable):

max
U(b),p(b)

∫ b

b

δ (v (b, p (b))− U (b) + F (βδb− p (b)) (p (b)− a)) dH (b) (32)

subject to:

U ′ (b) = β̂
(

1− β̂
)
δ2bf

(
β̂δb− p (b)

)
+ δF

(
β̂δb− p (b)

)
(33)

p′ (b) ≤ 0 (34)

U (b) = 0 (35)

Imposing the uniform distribution of c (F (c) = c−c
c−c and f (c) = 1

c−c),

v (b, p (b)) =

∫ β̂δb−p(b)

c

δb− p (b)− c
c− c

dc (36)

=

((
1− β̂

2

)
δb− 1

2
p (b)− c

2

)
β̂δb− p (b)− c

c− c

Then we can rewrite (32) and (33) as the following (37) and (38), respec-

tively:

max
U(b),p(b)

∫ b

b

δ

(
v (b, p (b))− U (b) +

βδb− p (b)− c
c− c

(p (b)− a)

)
h (b) db (37)
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U ′ (b) = β̂
(

1− β̂
)
δ2b

1

c− c
+ δ

β̂δb− p (b)− c
c− c

(38)

By integration by part:∫ b

b

U (b)h (b) db (39)

= [U (b) (H (b)− 1)]bb +

∫ b

b

U ′ (b) (1−H (b)) db

=

∫ b

b

U ′ (b) (1−H (b)) db

Insert (39) into (37) and then substitute U ′ (b) with its expression in (38),

we can compact the program (37) and the constraints (38)(35) into:

max
p(b)

:

∫ b

b

δ

(
βδb− p (b)− c

c− c
(p (b)− a)

)
h (b) db (40)

+

∫ b

b

δ

(((
1− β̂

2

)
δb− 1

2
p (b)− c

2

)
β̂δb− p (b)− c

c− c

)
h (b) db

−
∫ b

b

δ2

 β̂δb− p (b)− c
c− c

+
β̂
(

1− β̂
)
δb

c− c

 (1−H (b)) db

First of all we ignore the monotonicity constraint p′ (b) ≤ 0, so that (40)

becomes a point-wise optimization problem max
p
δ
∫ b
b
π (p, b) db, where

π (p, b) = h (b)

((
1− β̂

2

)
δb− 1

2
p− c

2

)
β̂δb− p− c

c− c
(41)

+
βδb− p− c

c− c
(p− a)h (b)

−δ

 β̂δb− p− c
c− c

+
β̂
(

1− β̂
)
δb

c− c

 (1−H (b))
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Then the first order condition with respect to p of (41) is:

∂π

∂p
=

−1

2

β̂δb− p− c
c− c

−

((
1− β̂

2

)
δb− 1

2
p− c

2

)
c− c

h (b) (42)

−
(
p− a
c− c

− βδb− p− c
c− c

)
h (b)

+
δ

c− c
(1−H (b))

= 0

By solving (42), we get:

p (b) = a− (1− β) δb+ δ
1−H (b)

h (b)
(43)

Under A1, 1−H(b)
h(b)

is decreasing in b, so the relaxed solution in (43) satisfies

automatically the constraint p′ (b) ≤ 0.

Next we need check that under the boundary conditions for b and c in

(5), the predicted (sophisticatedly or naively, at date 0) and real (at date 1)

consumption probability from the interior solution in (43) belongs to (0, 1)

for any type b so that no corner solution happens, i.e., (43) is exactly the

final solution of the original program (6) subject to (7)(8). It suffices to show

that ∀b, βδb− p (b)− c > 0 and β̂δb− p (b)− c < 1, where p (b) is defined by

(43).

Under (43) and (5),

∀b, βδb− p (b) = δb− a− δ1−H (b)

h (b)
≥ δb− a− δ

h (b)
> c (44)

where the inequality “≥” in (44) comes from the assumption that 1−H(b)
h(b)

is

decreasing in b and the fact that H (b) = 0.

On the other side,

∀b, β̂δb− p (b) ≤ δb− p (b) = (2− β) δb− a− δ1−H (b)

h (b)

≤ (2− β) δb− a < c (45)
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since H
(
b
)

= 1.

Given (43), L (b) = −U (b) + v (b, p (b)). By the envelope theorem in ICs,

L′ (b) = ∂v
∂p
· p′ (b), where ∂v

∂p
= −

(
1− β̂

)
δbf

(
β̂δb− p

)
− F

(
β̂δb− p

)
< 0,

so L′ (b) > 0.

Compared with the results in Lemma 1, we obviously see that p
(
b
)

=

pFB
(
b
)

and p (b) > pFB (b) for ∀b < b since the distortion δ 1−H(b)
h(b)

> 0 when

b < b.

Proof of Proposition 2. By (6) and substituting L (b) = −U (b) +

v (b, p (b)), the resulting expected profit of the firm is:

πSB,b =

∫ b

b

δ (v (b, p (b))− U (b) + F (βδb− p (b)) (p (b)− a)) dH (b) (46)

where p (b) is the second-best solution in (43).

From (35), we have U (b) =
∫ b
b
U ′
(
b̂
)
db̂, where U ′ (·) is given by (33).

After imposing the expression of U (b), of v (b, p (b)) (from (36)), and the

uniform distribution function of c into (46), πSB,b = δ
c−c

∫ b
b
π̃ (b) dH (b), where

π̃ (b) =

((
1− β̂

2

)
δb− 1

2
p (b)− c

2

)(
β̂δb− p (b)− c

)
−
∫ b

b

(
β̂
(

1− β̂
)
δ2b̂+ δ

(
β̂δb̂− p

(
b̂
)
− c
))

db̂

+ (p (b)− a) (βδb− p (b)− c) (47)

Thus the profit for a sophisticated (β̂ = β) b is:

π̃β̂=β (b) =
1

2
(βδb− p (b)− c) ((2− β) δb− p (b)− c) (48)

−
∫ b

b

(
β (2− β) δ2b̂− δp

(
b̂
)
− δc

)
db̂

+ (p (b)− a) (βδb− p (b)− c)

=
1

2
(βδb− p (b)− c) (2δb− 2a− c− (βδb− p (b)))

−
∫ b

b

(
β (2− β) δ2b̂− δp

(
b̂
)
− δc

)
db̂
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By imposing (43) for p (b), we obtain:

π̃β̂=β (b) =
1

2
(δb− a− δm (b)− c) (δb− a− c+ δm (b))

−
(
1 + β − β2

)
δ2
∫ b

b

b̂db̂+ δ (a+ c) (b− b) + δ2
∫ b

b

m
(
b̂
)
db̂

where m (b) = 1−H(b)
h(b)

.

We can simply write π̃β̂=β (b) = C (b)− (1 + β − β2) δ2
∫ b
b
b̂db̂. The func-

tion 1 + β − β2 is symmetric with respect to β = 1
2

(by the fact that

1 + (1− β)− (1− β)2 = 1 + β − β2), so π̃β̂=β (b; β) = π̃β̂=β (b; 1− β). There-

fore,

πSB,b
β̂=β

(β) =
δ

c− c

∫ b

b

π̃β̂=β (b; β) dH (b) (49)

=
δ

c− c

∫ b

b

π̃β̂=β (b; 1− β) dH (b)

= πSB,b
β̂=β

(1− β)

By taking the derivative of πSB,b
β̂=β

w.r.t. β, we get:

∂πSB,b
β̂=β

∂β
=

δ

c− c

∫ b

b

∂π̃β̂=β (b; β)

∂β
dH (b) (50)

=
δ3 (2β − 1)

c− c

∫ b

b

∫ b

b

b̂db̂dH (b)

=
δ3 (2β − 1)

c− c

∫ b

b

1

2

(
b2 − b2

)
dH (b)

b2− b2 ≥ 0 and the equality holds only if b = b, so
∫ b
b

1
2

(
b2 − b2

)
dH (b) >

0. Thus
∂2πSB,b

β̂=β

∂β2
=

2δ3

c− c

∫ b

b

1

2

(
b2 − b2

)
dH (b) > 0
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Therefore πSB,b
β̂=β

is globally and strictly convex in β. From (50),

∂πSB,b
β̂=β

∂β


> 0, if β > 1

2

= 0, if β = 1
2

< 0, if β < 1
2

(51)

So β = 1
2

reaches the minimum of πSB,b
β̂=β

when β varies from 0 to 1.

Proof of Corollary 2.

(i)

By (39), E (U (b)) =
∫ b
b
U (b)h (b) db =

∫ b
b
U ′ (b) (1−H (b)) db. Then

impose the expression of U ′ (b) in (38) and the fact of sophistication (β̂ = β),

we obtain:

E (U (b)) = δ

∫ b

b

(
βδb− p (b)− c

c− c
+
β (1− β) δb

c− c

)
(1−H (b)) db (52)

From Proposition 1, we know that p (b) = a − (1− β) δb + δ 1−H(b)
h(b)

. So

βδb− p (b) is independent of β. Thus we can reduce (52) to:

E (U (b)) =
β (1− β) δ2

c− c

∫ b

b

b (1−H (b)) db+X (53)

where X is not a function of β. So it’s obvious from (53) that E (U (b)) is

symmetric around β = 1
2
.

∂E (U (b))

∂β
=

(1− 2β) δ2

c− c

∫ b

b

b (1−H (b)) db (54)

Since 1 − H (b) ≥ 0 for all b ∈
[
b, b
]
, where the equality holds only if

b = b, we have
∫ b
b
b (1−H (b)) db > 0. Hence,

∂E (U(b))

∂β


< 0, if β > 1

2

= 0, if β = 1
2

> 0, if β < 1
2

(55)
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(55) is the non-monotonicity of E (U (b)) in β.

∂2E (U (b))

∂β2
=
−2δ2

c− c

∫ b

b

b (1−H (b)) db < 0 (56)

(56) is the strict concavity of E (U (b)). So from (55), β = 1
2

is the unique

maximum.

(ii)

SW = πSB,b
β̂=β

+
∫ b
b
δU (b) dH (b). Then replace πSB,b

β̂=β
by the expressions in

(36) and (37), and impose β̂ = β, we obtain:

SW =
δ

c− c

∫ b

b

(βδb− p (b)− c)
((

1− β

2

)
δb+

1

2
p (b)− c

2
− a
)
dH (b)

(57)

Since we know that βδb − p (b) is independent of β, so (57) is invariant

in β.

Proof of Proposition 5.

(i)

Define the informational rent U (β) = −L (β) + v (β, p (β)) of type β, so

from ICs in (22) and the envelope theorem,

U ′ (β) =
∂v

∂β
= (1− β) (δb)2 f (βδb− p (β)) > 0

Thus ∀β ∈
(
β, β

]
, U (β) > U

(
β
)
; so the IRs in (23) can just reduce

to the IR of the bottom type β, i.e., U
(
β
)
≥ 0, which has to be binding:

U
(
β
)

= 0.

And ICs in (22) tell us that ∀β, β′ ∈
[
β, β

]
,

−L (β′) + v (β′, p (β′)) ≥ −L (β) + v (β′, p (β)) (58)

−L (β) + v (β, p (β)) ≥ −L (β′) + v (β, p (β′)) (59)
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Summing (58) and (59), we obtain that:

v (β′, p (β′))− v (β′, p (β)) + v (β, p (β))− v (β, p (β′)) (60)

=

∫ β′

β

∫ p(β′)

p(β)

∂2v

∂β̃∂p

(
β̃, p
)
dpdβ̃ ≥ 0

∂2v

∂β̃∂p
= −

(
1− β̃

)
(δb)2 f ′

(
β̃δb− p

)
> 0 under A2. So the inequality

in (60) restricts that β′ ≥ β ⇔ p (β′) ≥ p (β), which gives a monotone

constraint on the optimal p (·): p′ (β) ≥ 0 for ∀β ∈
[
β, β

]
.

Substituting L (β) = −U (β) + v (β, p (β)), we can transform the original

program (21) subject to (22)(23) into the following optimal control problem

(p (β) as control variable, U (β) as state variable):

max
U(β),p(β)

∫ β

β

δ (v (β, p (β))− U (β) + F (βδb− p (β)) (p (β)− a)) dG (β) (61)

subject to:

U ′ (β) = (1− β) (δb)2 f (βδb− p (β)) (62)

p′ (β) ≥ 0 (63)

U
(
β
)

= 0 (64)

By integration by part:∫ β

β

U (β) dG (β) (65)

= [U (β) (G (β)− 1)]ββ +

∫ β

β

U ′ (β) (1−G (β)) dβ

=

∫ β

β

U ′ (β) (1−G (β)) dβ

We insert (65) and the expression of v into (61), then we can compact

the program (61) and the constraints (62)(64) into:

max
p(β)

δ

∫ β

β

(g (β)κ (β, p (β))− U ′ (β) (1−G (β))) dβ (66)
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where κ (β, p (β)) =
∫ βδb−p(β)
c

(δb− p (β)− c) dF (c)+F (βδb− p (β)) (p (β)− a).

First we ignore the monotonicity constraint p′ (β) ≥ 0, so that (66) be-

comes a point-wise optimization problem max
p
δ
∫ β
β
π (p, β) dβ, where π (p, β) =

g (β)κ (β, p)− U ′ (β) (1−G (β)).

Then the first order condition with respect to p is:

∂π

∂p
= (1− β) (δb)2 f ′ (βδb− p) (1−G (β)) (67)

− ((p− a+ (1− β)) δbf (βδb− p)) g (β)

= 0

By solving (67), we obtain:

p = a− (1− β) δb+ (1− β) (δb)2
1−G (β)

g (β)
· f
′ (βδb− p)
f (βδb− p)

(68)

= pFB
β=β̂

+ (1− β) (δb)2
1−G (β)

g (β)
· f
′ (βδb− p)
f (βδb− p)

Now we consider the monotonicity constraint p′ (β) ≥ 0.
∂pFB
β=β̂

∂β
= δb > 0,

but we do not know the sign of ∂
∂β

(
(1− β) 1−G(β)

g(β)
· f

′(βδb−p)
f(βδb−p)

)
. The most

important thing is that we check whether the relaxed control solution in (68)

satisfies p
(
β
)
> p

(
β
)
; if so, we can always realize a non-decreasing control

trajectory starting from p
(
β
)

and ending at p
(
β
)

even if p in (68) decreases

in β in some sub-intervals inside
(
β, β

)
12. By (68), p

(
β
)

= a−
(
1− β

)
δb >

a −
(
1− β

)
δb = pFB

β=β̂

(
β
)
> p

(
β
)

since G
(
β
)

= 1 and f ′ (·) < 0. So there

12In fact we can circumvent “bunching” by appending a parametric specification on

the distribution of c and the monotone hazard rate property on β. For example, c is

exponentially distributed on [0,+∞), i.e., f (c) = λe−λc, so f ′(·)
f(·) is constant globally; plus

the fact that 1−G(β)
g(β) is decreasing in β and f ′ (·) < 0: ∂

∂β

(
(1− β) 1−G(β)

g(β) ·
f ′(βδb−p)
f(βδb−p)

)
>

0 so that the relaxed p in (68) is increasing in β (the monotone constraint is satisfied

automatically).
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exists a non-decreasing optimal control on
[
β, β

]
, pSB (β), satisfying

pSB
(
β
)

= a−
(
1− β

)
δb = pFB

β=β̂

(
β
)

; (69)

pSB
(
β
)

= a−
(
1− β

)
δb+

(
1− β

)
(δb)2

1

g
(
β
) · f ′ (βδb− pSB (β))

f
(
βδb− pSB

(
β
)) ;

∀β ∈
[
β, β

]
,
∂pSB (β)

∂β
≥ 0.

An illustration of pSB (β) with compared to the relaxed solution in (68)

and pFB
β=β̂

are shown in Figure 5.

We know that L (β) = −U (β) + v (β, p (β)), so by envelope theorem,

∂LSB (β)

∂β
=

∂v

∂p
· ∂p

SB (β)

∂β
(70)

= −
(
(1− β) δbf

(
βδb− pSB (β)

)
+ F

(
βδb− pSB (β)

)) ∂pSB (β)

∂β

≤ 0

(ii)

It’s already shown in (69).

(iii)

In the relaxed solution from (68), the distortion part (1− β) (δb)2 1−G(β)
g(β)

·
f ′(βδb−p)
f(βδb−p) < 0. So for those β whose pSB (β) coincides with the relaxed solution

p (β) in (68), we have pSB (β) ≤ pFB
β=β̂

(β), where the equality holds only if

β = β.

For those β in the bunching interval, we use the “reduction to absurdity”.

Suppose ∃β̌ ∈ a bunching interval (β1, β2), where pSB
(
β̌
)
≥ pFB

β=β̂

(
β̌
)
. Be-

cause of bunching, pSB (β1) = pSB
(
β̌
)
. And β̌ > β1 ⇒ pFB

β=β̂

(
β̌
)
> pFB

β=β̂
(β1)

since pFB
β=β̂

(β) is strictly increasing in β. So pSB (β1) > pFB
β=β̂

(β1). While

β1 is the starting point of this bunching interval, that is, pSB (β1) coin-

cides with the relaxed p (β1) of (68). According to the preceding paragraph,
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pSB (β1) ≤ pFB
β=β̂

(β1), where a contradiction appears. So for those β in the

bunching interval, we also have pSB (β) < pFB
β=β̂

(β).

At last, since we do not impose corner solution/boundary constraints in

Program (21) subject to (22)(23), we need to check that under the boundary

condition c < δb − a and the solution in (69), the resulting consumption

probability of any type (β) strictly belongs to (0, 1), i.e., interior solution.

The maximum cost encountered by a type β to exercise is βδb − pSB (β) ≥

βδb−pFB
β=β̂

(β), where the equality holds only if β = β. While βδb−pFB
β=β̂

(β) =

δb− a > c, so ∀β ∈
[
β, β

]
, βδb− pSB (β) > c, the consumption probability is

strictly positive. And since the upper bound of c is +∞, so the consumption

probability is always lower than 1. Till here the expressions in (69) are

indeed the optimal second-best pricing to Program (21) subject to (22)(23)

(no corner solution conflict) and all the associated shown properties work.

Proof of Proposition 6.

(i)

Define the informational rent U
(
β̂
)

= −L
(
β̂
)

+ v
(
β̂, p

(
β̂
))

of type β̂,

so from ICs in (26) and the envelope theorem,

U ′
(
β̂
)

=
∂v

∂β̂
=
(

1− β̂
)

(δb)2 f
(
β̂δb− p

(
β̂
))
≥ 0 (71)

where the equality holds only if β̂ = 1. So ∀β̂ ∈ (β, 1], U
(
β̂
)
> U (β); so the

IRs in (27) can just reduce to the IR of the bottom type β, i.e., U (β) ≥ 0,

which has to be binding: U (β) = 0.

And ICs in (26) tell us that ∀β̂, β̂′ ∈ [β, 1],

−L
(
β̂′
)

+ v
(
β̂′, p

(
β̂′
))
≥ −L

(
β̂
)

+ v
(
β̂′, p

(
β̂
))

(72)

−L
(
β̂
)

+ v
(
β̂, p

(
β̂
))
≥ −L

(
β̂′
)

+ v
(
β̂, p

(
β̂′
))

(73)
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Summing (72) and (73), we obtain that:

v
(
β̂′, p

(
β̂′
))
− v

(
β̂′, p

(
β̂
))

+ v
(
β̂, p

(
β̂
))
− v

(
β̂, p

(
β̂′
))

(74)

=

∫ β̂′

β̂

∫ p(β̂′)

p(β̂)

∂2v

∂
˜̂
β∂p

(˜̂
β, p

)
dpd
˜̂
β ≥ 0

∂2v

∂
˜̂
β∂p

= −
(

1− ˜̂β) (δb)2 f ′
(˜̂
βδb− p

)
> 0 under A2. So the inequality

in (74) restricts that β̂′ ≥ β̂ ⇔ p
(
β̂′
)
≥ p

(
β̂
)

, which gives a monotone

constraint on the optimal p (·): p′
(
β̂
)
≥ 0 for ∀β̂ ∈ [β, 1].

Substituting L
(
β̂
)

= −U
(
β̂
)

+v
(
β̂, p

(
β̂
))

, we can transform the orig-

inal program (25) subject to (26)(27) into the following optimal control prob-

lem (p
(
β̂
)

as control variable, U
(
β̂
)

as state variable):

max
U(β̂),p(β̂)

∫ 1

β

δ
(
v
(
β̂, p

(
β̂
))
− U

(
β̂
)

+ F
(
βδb− p

(
β̂
))(

p
(
β̂
)
− a
))

dJ
(
β̂
)

(75)

subject to:

U ′
(
β̂
)

=
(

1− β̂
)

(δb)2 f
(
β̂δb− p

(
β̂
))

(76)

p′
(
β̂
)
≥ 0

U (β) = 0 (77)

By integration by part:∫ 1

β

U
(
β̂
)
dJ
(
β̂
)

(78)

=
[
U
(
β̂
)(

J
(
β̂
)
− 1
)]1

β
+

∫ 1

β

U ′
(
β̂
)(

1− J
(
β̂
))

dβ̂

=

∫ 1

β

U ′
(
β̂
)(

1− J
(
β̂
))

dβ̂

We insert (78) and the expression of v into (75), then we can compact

the program (75) and the constraints (76)(77) into:

max
p(β̂)

δ

∫ 1

β

(
j
(
β̂
)
κ
(
β, β̂, p

(
β̂
))
− U ′

(
β̂
)(

1− J
(
β̂
)))

dβ̂ (79)
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where

κ
(
β, β̂, p

(
β̂
))

=

∫ β̂δb−p(β̂)

c

(
δb− p

(
β̂
)
− c
)
dF (c)+F

(
βδb− p

(
β̂
))(

p
(
β̂
)
− a
)

First we ignore the monotonicity constraint p′
(
β̂
)
≥ 0, so that (79)

becomes a point-wise optimization problem:

max
p
j
(
β̂
)
κ
(
β, β̂, p

(
β̂
))
− U ′

(
β̂
)(

1− J
(
β̂
))

(80)

Then the solution of (80) is:

p = a−
(

1− β̂
)
δb
f
(
β̂δb− p

)
f (βδb− p)

(81)

−
F
(
β̂δb− p

)
− F (βδb− p)

f (βδb− p)

+
(

1− β̂
)

(δb)2
1− J

(
β̂
)

j
(
β̂
) ·

f ′
(
β̂δb− p

)
f (βδb− p)

Now the most important thing for the existence of a separated screening

is that under the relaxed solution in (81), p
(
β̂ = 1

)
> p

(
β̂ = β

)
, i.e., the

starting and ending point of the relaxed trajectory satisfies the monotonicity

constraint p′
(
β̂
)
≥ 0, then even if p

(
β̂
)

in (81) is not non-decreasing in β̂,

we can do “bunching” in between; otherwise (p
(
β̂ = 1

)
≤ p

(
β̂ = β

)
) from

the Pontryagin principle, we cannot have a non-constant control p
(
β̂
)

under

p′
(
β̂
)
≥ 0, then we go back to the result of pooling in Section 3.3. By (81),

the condition p
(
β̂ = 1

)
> p

(
β̂ = β

)
is:

f ′
(
βδb− p

(
β̂ = β

))
f
(
βδb− p

(
β̂ = β

)) · δb

j (β)
(82)

< 1−
F
(
δb− p

(
β̂ = 1

))
− F

(
βδb− p

(
β̂ = 1

))
(1− β) δbf

(
βδb− p

(
β̂ = 1

))
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We can find a sufficient condition for the validity of (82) is that b is large

enough13; more rigorously: ∃b̂ > 0, s.t., ∀b ≥ b̂, (82) is satisfied.

We rearrange (82) as:

f ′
(
βδb− p

(
β̂ = β

))
f
(
βδb− p

(
β̂ = β

)) · δb

j (β)
−

1− F
(
δb− p

(
β̂ = 1

))
(1− β) δbf

(
βδb− p

(
β̂ = 1

))(83)

< 1−
1− F

(
βδb− p

(
β̂ = 1

))
(1− β) δbf

(
βδb− p

(
β̂ = 1

))
LHS of (83) is negative, so it’s sufficient to make (82) hold by showing

∃b̂ > 0, s.t., ∀b ≥ b̂,
1−F(βδb−p(β̂=1))

(1−β)δbf(βδb−p(β̂=1))
< 1. By A2,

1−F(βδb−p(β̂=1))
f(βδb−p(β̂=1))

is

non-increasing in [c,+∞), so the maximum hazard rate of c is 1
f(c)

, i.e.,

1−F(βδb−p(β̂=1))
f(βδb−p(β̂=1))

is bounded above and always positive. So

lim
b→+∞

1

(1− β) δb
= 0+ ⇒ lim

b→+∞

1− F
(
βδb− p

(
β̂ = 1

))
(1− β) δbf

(
βδb− p

(
β̂ = 1

)) = 0+

Therefore, ∃b̂ > 0, s.t., ∀b ≥ b̂,
1−F(βδb−p(β̂=1))

(1−β)δbf(βδb−p(β̂=1))
< 1, i.e., (82) holds and

it’s possible to conduct a separated screening menu. Thanks to “bunching”

technique if necessary, we can obtain an optimal control in the interval [β, 1],

13if we impose a parametric application of A2, e.g., to assume that c is exponentially

distributed on [0,+∞), i.e., f (c) = λe−λc, then (82) is satisfied for ∀b > 0. LHS of (82)

is negative, so if
F(δb−p(β̂=1))−F(βδb−p(β̂=1))

(1−β)δbf(βδb−p(β̂=1))
< 1, then (82) holds. With the functional

form f (c) = λe−λc,
F(δb−p(β̂=1))−F(βδb−p(β̂=1))

(1−β)δbf(βδb−p(β̂=1))
= 1−e−λ(1−β)δb

λ(1−β)δb < 1 since e−x > 1− x for

∀x > 0. In addition, if with the exponential c, the relaxed solution in (81) is automatically

increasing in β̂, i.e., no need of “bunching”.
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pSB
(
β̂
)

, of the program (75) as:

pSB
(
β̂ = 1

)
= a−

F
(
δb− pSB

(
β̂ = 1

))
− F

(
βδb− pSB

(
β̂ = 1

))
f
(
βδb− pSB

(
β̂ = 1

)) ; (84)

pSB
(
β̂ = β

)
= a− (1− β) δb+ (1− β) (δb)2

1

j (β)
·
f ′
(
βδb− pSB

(
β̂ = β

))
f
(
βδb− pSB

(
β̂ = β

)) ;

∀β̂ ∈ [β, 1] ,
∂pSB

(
β̂
)

∂β̂
≥ 0.

An illustration of pSB
(
β̂
)

with compared to the relaxed solution in (81)

and pFB
β̂>β

are shown in Figure 6.

We know that L
(
β̂
)

= −U
(
β̂
)

+ v
(
β̂, p

(
β̂
))

, so by envelope theorem,

∂LSB
(
β̂
)

∂β̂
=

∂v

∂p
·
∂pSB

(
β̂
)

∂β̂
(85)

= −
((

1− β̂
)
δbf

(
β̂δb− p

)
+ F

(
β̂δb− p

)) ∂pSB (β̂)
∂β̂

≤ 0

(ii)

By (3) and imposing β̂ = 1, we have

pFB
β̂=1>β

= a−
F
(
δb− pFB

β̂=1>β

)
− F

(
βδb− pFB

β̂=1>β

)
f
(
βδb− pFB

β̂=1>β

)
which is the same equation as in (84) for β̂ = 1, so pSB

(
β̂ = 1

)
= pFB

β̂=1>β
.

From (28) and β̂ = β in (84), we can obtain

pSB
(
β̂ = β

)
− pFB

β̂=β<1

= (1− β) (δb)2
1

j (β)
·
f ′
(
βδb− pSB

(
β̂ = β

))
f
(
βδb− pSB

(
β̂ = β

))
< 0
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since f ′ (·) < 0.

Proof of Corollary 3. The informational rent of a β̂-type consumer

is U
(
β̂
)

= −LSB
(
β̂
)

+ v
(
β̂, pSB

(
β̂
))

. From part (i) of the proof of

Proposition 6, U ′
(
β̂
)
≥ 0, where the equality holds only if β̂ = 1.

The real rent/consumption surplus of the investment good for a β̂-type

consumer is Ũ
(
β̂
)

= −LSB
(
β̂
)

+ v
(
β, pSB

(
β̂
))

. Impose the definition of

v at Page 17, the wedge between fictitious and real rent is:

Ũ
(
β̂
)

= U
(
β̂
)
−
∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)

(
δb− pSB

(
β̂
)
− c
)
dF (c)

and

Ũ ′
(
β̂
)

= U ′
(
β̂
)
−
(
δb− pSB′

(
β̂
))(

1− β̂
)
δbf

(
β̂δb− pSB

(
β̂
))

(86)

−pSB′
(
β̂
)(

(1− β) δbf
(
βδb− pSB

(
β̂
))
−
∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)
f (c) dc

)

By imposing (71), (86) can be rearranged as:

Ũ ′
(
β̂
)

= pSB′
(
β̂
)
δb
(

1− β̂
)
f
(
β̂δb− pSB

(
β̂
))

(87)

−pSB′
(
β̂
)
δb (1− β) f

(
βδb− pSB

(
β̂
))

+pSB′
(
β̂
)∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)
f (c) dc

= pSB′
(
β̂
)
δb
(

1− β̂
)(

f
(
β̂δb− pSB

(
β̂
))
− f

(
βδb− pSB

(
β̂
)))

+pSB′
(
β̂
)(∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)
f (c) dc−

(
β̂ − β

)
δbf

(
βδb− pSB

(
β̂
)))

= pSB′
(
β̂
)(

δb
(

1− β̂
)
· Y + Z

)
where Y = f

(
β̂δb− pSB

(
β̂
))
− f

(
βδb− pSB

(
β̂
))

< 0 for β̂ > β since
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f ′ (·) < 0 under A2; and,

Z =

∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)
f (c) dc−

(
β̂ − β

)
δbf

(
βδb− pSB

(
β̂
))

=

∫ β̂δb−pSB(β̂)

βδb−pSB(β̂)

(
f (c)− f

(
βδb− pSB

(
β̂
)))

dc < 0

since f (c)− f
(
βδb− pSB

(
β̂
))
≤ 0, ∀c ∈

[
βδb− pSB

(
β̂
)
, β̂δb− pSB

(
β̂
)]

,

where the equality holds only when c = βδb− pSB
(
β̂
)

.

So δb
(

1− β̂
)
· Y + Z ≤ 0, where the equality holds only if β̂ = β.

From part (i) of Proposition 6, pSB′
(
β̂
)
≥ 0, where the equality holds

for the “bunching” types.

Hence, return back to (87), Ũ ′
(
β̂
)
≤ 0, where the equality holds for

β̂ = β and bunching types.
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Figure 1. The Timing Setting of an Investment Good Pricing Model 
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Figure 2.
Illustration of Quasi-hyperbolic Discounting
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Figure 4. 
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